Attractant and repellent properties of Senna didymobotrya plant extracts to Amblyomma variegatum and Rhipicephalus appendiculatus

Publication Type

Journal Article

Journal Name

Veterinary Parasitology

Publication Date

7-1-2024

Abstract

The growing challenge of acaricide resistance and geographical range expansion of invasive tick species demands other interventions, like plant-based alternatives, for sustainable tick control. Leaves, flowers, seedpods, and twig branch extracts of Senna didymobotrya were analyzed using coupled gas chromatography mass spectrometry (GC-MS). Response of adult Amblyomma variegatum and Rhipicephalus appendiculatus to extracts was evaluated. The most attractive plant extract was fractionated and ticks’ responses to its fractions assessed. Potential tick attractants in the attractive plant part extract and its fractions were identified by GC-MS analysis. Non- significant qualitative and quantitative differences were observed in the plant parts’ extract composition (R = 0.6178). Flower extracts attracted both species, with a 0.1-fold higher attraction in A. variegatum compared to the standard attraction aggregation attachment pheromone (AAAP). Leaf and seedpod extracts repelled ticks at various concentrations. Bioassays after fractionating flower extracts identified hexane and ethyl acetate fractions as most attractive to A. variegatum (P < 0.001) and R. appendiculatus (P < 0.001), respectively. Chemical analysis of the most attractive extracts and fractions identified compounds, including documented acarine attractants, squalene and linoleic acid. A squalene and linoleic acid blend (1:1) at 1 mg/mL significantly attracted adult A. variegatum (P < 0.01) and R. appendiculatus (P < 0.001). The results of this study broaden comprehension of how ticks respond to plants in nature, and showcase the promising potential for integrating these insights into effective tick management programs.

Keywords

Amblyomma variegatum, Attractant, Repellent, Rhipicephalus appendiculatus, Senna didymobotrya extract, Sustainable tick control

PubMed ID

38810593

Funding Statement

The authors gratefully acknowledge the financial support for this research by the following organizations and agencies: the German Ministry for Economic Cooperation and Development (BMZ) through the Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ) ICTDL grant number: 18.7860.2-001.00; the Swedish International Development Cooperation Agency (Sida); the Swiss Agency for Development and Cooperation (SDC); the Australian Centre for International Agricultural Research (ACIAR); the Norwegian Agency for Development Cooperation (Norad); the German Federal Ministry for Economic Cooperation and Development (BMZ); and the Government of the Republic of Kenya. The views expressed herein do not necessarily reflect the official opinion of the donors.

Share

COinS