Publication Type
Journal Article
Journal Name
Soil Biology and Biochemistry
Publication Date
12-1-2013
Abstract
Soil organic matter is important to improve and sustain soil fertility in tropical agroecosystems. The combined use of organic residue and fertilizer inputs is advocated for its positive effects on short-term nutrient supply, but the effect of the integrated use on long-term stabilization of soil organic C and N is still unclear. We conducted a 1.5-y soil incubation experiment with maize (Zea mays) residue and urea fertilizer to examine the stabilization of C and N in four Sub-Saharan African soils differing in texture (sand, sandy loam, clay loam, and clay). The inputs were enriched with 13C and 15N in a mirror-labelling design to trace the fate of residue-C and N, and fertilizer-N in combination. We hypothesized that combining inputs would enhance the stabilization of C and N relative to either input alone across a range of soil textures. The treatments were destructively sampled after 0.25, 0.5, and 1.5y to assess input-derived C and N stabilization in soil macro- and microaggregate fractions. The combination treatment had a significant but small (2% of residue-applied C) increase in residue-C stabilized in the total soil after0.25y, but this increase did not persist after 0.5 and 1.5y. While combining residue and fertilizer decreased the amount of residue-N stabilized within 53- to 2000-μm sized soil aggregates (e.g., 7% less at1.5y), it increased the stabilization of fertilizer-N at all sampling times (e.g., 20% more at 1.5y). The increased amount of fertilizer-N stabilized was significantly greater than the amount of residue-N lost in the combined input treatments in the three finer textured soils at 1.5y, indicating an interactive increase in the stabilization of new N. Our results indicate that combining residue with fertilizer inputs can increase the short-term stabilization of N, which has the potential to improve soil fertility. However, benefits to N stabilization from combining organic residues and fertilizer seem to be less in coarser-textured soils. © 2013 Elsevier Ltd.
Keywords
Aggregates, N fertilizers, Organic residue, Soil organic matter, Soil texture, Tropical agroecosystems
Recommended Citation
Gentile, R., Vanlauwe, B., & Six, J. (2013). Integrated Soil Fertility Management: Aggregate carbon and nitrogen stabilization in differently textured tropical soils. Soil Biology and Biochemistry, 67, 124-132. https://doi.org/10.1016/j.soilbio.2013.08.016