Publication Type

Journal Article

Journal Name

Veterinary World

Publication Date

1-1-2026

Abstract

Background and Aim: Antimicrobial resistance (AMR) has emerged as a major One Health threat driven by inappropriate antimicrobial use (AMU) in humans, animals, and the environment. Poultry production is recognized as a key reservoir of antimicrobial-resistant bacteria, yet few studies in Kenya examine AMU and AMR across interconnected human–animal–environment domains. This study assessed AMU patterns among poultry farmers in Kiambu County and characterized phenotypic resistance in Escherichia coli and Enterococcus spp. isolated from humans, chickens, and chicken environments. Materials and Methods: A cross-sectional study was conducted from May to September 2024, involving 102 poultry farms. Farm demographics and AMU data were collected using a semi-structured questionnaire. Archived E. coli (n = 92) and Enterococcus spp. (n = 101) isolates from chicken handlers’ hands, chickens, and environmental samples were subjected to antimicrobial susceptibility testing using the Kirby–Bauer method per Clinical and Laboratory Standards Institute (CLSI) 2024 guidelines. Descriptive and inferential statistics, including logistic regression with false discovery rate correction, were used to assess associations between AMU and phenotypic resistance. Results: Macrolides (69%), tetracyclines (48%), and sulfonamides (21%) were the most commonly used antimicrobials; 7% of farms reported colistin use. Among E. coli isolates, resistance was highest to ampicillin (77%), tetracycline (72%), and trimethoprim–sulfamethoxazole (49%), with 35% exhibiting multidrug resistance (MDR). No carbapenem resistance was detected. Enterococcus isolates showed high erythromycin resistance (61%) and moderate ciprofloxacin resistance (26%), with 6.9% exhibiting MDR; no vancomycin-resistant enterococci (VRE) were observed. Penicillin use strongly predicted ampicillin resistance in both organisms, whereas sulfonamide use was associated with reduced trimethoprim–sulfamethoxazole resistance. Macrolide use did not correlate with erythromycin resistance. Conclusion: High AMU in poultry farming, particularly of macrolides, tetracyclines, and sulfonamides, has created significant selection pressure, contributing to MDR emergence across One Health interfaces. Detection of resistance in humans, poultry, and shared environments underscores the bidirectional risk of AMR transmission. Strengthened antimicrobial stewardship, regulation of critically important antimicrobials, and enhanced farm hygiene are essential to mitigate AMR. These findings directly support Kenya’s Vision 2030 and SDGs targeting health, responsible production, and environmental protection.

Keywords

antimicrobial resistance, Antimicrobial use, Enterococcus, Escherichia coli, Kenya, One Health, poultry farming

Creative Commons License

Creative Commons Attribution 4.0 International License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.