Publication Type

Journal Article

Journal Name

Machine Learning with Applications

Publication Date

3-1-2026

Abstract

Traditional rule-based anti-money laundering (AML) transaction monitoring systems suffer from high false-positive rates and rigidity in detecting complex emerging risk. This limitation has prompted changes to the Financial Action Task Force (FATF) recommendation 16, mandating the use of advanced systems for detecting money laundering schemes in cross-border payments. This study developed a hybrid framework integrating VAE-learned behavioural latent factors, GNN-captured relational network signals, and rule-based heuristics for enhanced anomaly detection. The model was evaluated on 54,258 real-world cross-border transaction records from an East African commercial bank. The One-Class SVM, optimised via a rigorous grid search proved superior compared to Isolation Forest and Local Outlier Factor benchmark, achieving a precision of 99.63% in the top 5% of prioritised alerts. Independent validation by a Kenyan financial institution confirms a batch processing speed of 1000 transactions per second on standard computer hardware (Intel Core i7, 16 GB RAM) and efficient high-priority alert triage, key requirements for deployment in financial institutions. Shapley additive explanations analysis further provided the interpretability of the feature contribution to the model performance. These results demonstrated that integration of rule-based features with deep-learning embeddings improves compliance work efficiency and proven pathway for resource-constrained financial institutions to comply with FATF regulatory demands upcoming in 2030.

Keywords

Anomaly detection, Deep learning, Feature fusion, Financial crime, Prioritisation

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.