Publication Type

Journal Article

Publication Date (Issue Year)

2024

Journal Name

Remote Sensing

Abstract

Leveraging weather radar technology for environmental monitoring, particularly the detection of biometeors like birds, bats, and insects, presents a significant challenge due to the dynamic nature of their behavior. Unlike hydrometeor targets, biometeor targets exhibit arbitrary changes in direction and position, which significantly alter radar wave polarization upon scattering. This study addresses this challenge by introducing a novel methodology utilizing Rwanda’s C-Band Polarization Radar. Our approach exploits the capabilities of dual-polarization radar by analyzing parameters such as differential reflectivity (ZDR) and correlation coefficient (RHOHV) to derive the Depolarization Ratio (DR). While existing radar metrics offer valuable insights, they have limitations in fully capturing depolarization effects. To address this, we propose an advanced fuzzy logic algorithm (FL_DR) integrating the DR parameter. The FL_DR’s performance was rigorously evaluated against a standard FL algorithm. Leveraging a substantial dataset comprising nocturnal clear air radar echoes collected during a Fall Armyworm (FAW) outbreak in maize fields from September 2020 to January 2021, the FL_DR demonstrated a notable improvement in accuracy compared to the existing FL algorithm. This improvement is evident in the Fraction of Echoes Correctly Identified (FEI), which increased from 98.42% to 98.93% for biological radar echoes and from 87.02% to 95.81% for meteorological radar echoes. This enhanced detection capability positions FL_DR as a valuable system for monitoring, identification, and warning of environmental phenomena in regions similar to tropical areas facing FAW outbreaks. Additionally, it could be tested and further refined for other migrating biological targets such as birds, insects, or bats.

Keywords

depolarization ratio (DR), fuzzy logic algorithm, fall armyworm (FAW) detection, weather radar, FAW early warning system

Rsif Scholar Name

Fidele Maniraguha

Rsif Scholar Nationality

Rwanda

Cohort

Cohort 2

Thematic Area

ICTs Including Big Data and Artificial Intelligence

Africa Host University (AHU)

University of Rwanda (UR), Rwanda

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.