Publication Type

Journal Article

Publication Date (Issue Year)

2022

Journal Name

International Journal of Advanced Computer Science and Applications

Abstract

Air pollution spikes have been causing harm to human beings and the environment. Most exposure to Air pollution spikes has demonstrated a significant impact on mental health, especially children at an early age. That lead to suicide or depression. Previous research concentrated on air pollution in general. Existing monitoring systems do not consider Short-term air pollution peaks. This paper presents the co-design of the hardware and software for IoT to monitor air pollution spikes for a short duration in real-time monitoring. The system comprises two technologies like edge computing to capture short- term exposure and a mathematical model for distribution in analyzing the captured data. This system ensures the presence of the spikes start and end for each pollutant. Monte Carlo simulation has been used in this research to predict the next spike of each pollutant. Artificial Intelligent is used to analyze immutable data for a short term prediction. After the analysis, legislators based on intelligent contracts created using blockchain to reduce pollution based on its source.

Keywords

Short-duration air pollution peak/spike, real-time monitoring, short-term prediction, immutable data, blockchain, AI

Rsif Scholar Name

Eric Nizeyimana

Rsif Scholar Nationality

Rwanda

Cohort

Cohort 2

Thematic Area

ICTs Including Big Data and Artificial Intelligence

Africa Host University (AHU)

University of Rwanda (UR), Rwanda

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.